

PB-003-1163003 Seat No. _____

M. Sc. (Sem. III) (CBCS) Examination

May / June - 2018

Mathematics: Course No. 3003

(Number Theory - I) (New Course)

		Faculty Subject						
Time:	$2\frac{1}{2}$ Hours]				[Total Marks : 70	0		
Instruct	(1) (2) (3)	All ques	stions ar	e cor				
1 Sele	ect the most	t appropri	ate ansv	ver f	for each of following:			
(A)					an find of			
	two intege	ers.						
	(i) lcm			(ii)	gcd			
	(iii) produ	ct		(iv)	sum			
(B)	of 29 is							
	(i) 12			(ii)	13			
	(iii) 29			(iv)	28			
(C) If $x^2 + 1 \equiv 0 \pmod{p}$ has a solution then $p =$								
	(i) 59			(ii)	41			
	(iii) 79			(iv)	19			
(D)	If $x^2 + 1 \equiv$	If $x^2 + 1 \equiv 0 \pmod{p}$ has a no solution then $p =$						
	(i) 13			(ii)	17			
	(iii) 29			(iv)	79			
(E)	If 59 divides $a^2 + b^2$ then 79 divides							
	(i) a only	y		(ii)	b only			
	(iii) a and	l b both		(iv)	neither a nor b			
PR-003-1163003 1			1		[Contd			

	(F)	(F) is the consequence of Euler's theorem.							
		(i) Wilson's theorem	(ii)	Hensel lemma					
		(iii) Fermat's theorem	(iv)	Euclidean Algorithm					
	(G)	The number of positive in 1001 is	itegers	relatively prime to					
		(i) 520	(ii)	1000					
		(iii) 720	(iv)	101					
2	Atte	Attempt any two:							
	(A)	If g.c.d. of two integers a a	efine the greatest common divisor of two integers. f g.c.d. of two integers a and b is g then prove that						
		$\left(\frac{a}{g}, \frac{b}{g}\right) = 1.$							
	(B)		tegers then prove	7					
	that $(a,b)[a,b] = ab$. (C) State and prove Euclidean algorithm.								
3	All	compulsory:							
	(A)								
	(B) Suppose p and q are distinct primes each of whice divides n . Prove that pq divides n .								
	(C) Use the Euclidean Algorithm to find the greatest common divisor of 1947 and 2017.								
		OR	_						
3	Δ11	compulsory:							
•		State and prove Euler's th	eorem	•	7				
		Find all solutions of $x^2 \equiv$			4				
		complete residue system {0							
	(C)				3				
		$x^2 \equiv -1 \pmod{59}$ has solution	tion o	c not.					
4	Atte	empt any two :							
	(A)) State and prove chinese remainder theorem.							
	(B)	Find the solutions of the f	followi	ng congruence	7				
		equations if there is any.							
		(i) $x^2 - 1 \equiv 0 \pmod{15}$							
		(ii) $x^2 + 1 \equiv 0 \pmod{125}$							

- (C) Suppose m is a positive integer such that $m = m_1 m_2$, $(m_1, m_2) = 1$, $(\phi(m_1), \phi(m_2)) \ge 2$. Prove that m has no primitive root. Give three positive integers of the above type which have no primitive roots.
- **5** Do as directed. All are compulsory and each question carries two marks:
 - (a) Give the statement of Fermat's theorem
 - (b) Write the statement of Hensel's Lemma.
 - (c) Find the primitive roots of 3^2 and 5^2 .
 - (d) Find the number of positive integers relatively prime to $1001 \times 25 \times 31$.
 - (e) Write the statement of Mobious inversion formula.
 - (f) Give all the positive divisors of p.q.r.s where p,q,r,s are distinct prime numbers.
 - (g) If $n \ge 1$ then what is the value of $\phi(7^n)$?